165 research outputs found

    S-COL: A Copernican turn for the development of flexibly reusable collaboration scripts

    Get PDF
    Collaboration scripts are usually implemented as parts of a particular collaborative-learning platform. Therefore, scripts of demonstrated effectiveness are hardly used with learning platforms at other sites, and replication studies are rare. The approach of a platform-independent description language for scripts that allows for easy implementation of the same script on different platforms has not succeeded yet in making the transfer of scripts feasible. We present an alternative solution that treats the problem as a special case of providing support on top of diverse Web pages: In this case, the challenge is to trigger support based on the recognition of a Web page as belonging to a specific type of functionally equivalent pages such as the search query form or the results page of a search engine. The solution suggested has been implemented by means of a tool called S-COL (Scripting for Collaborative Online Learning) and allows for the sustainable development of scripts and scaffolds that can be used with a broad variety of content and platforms. The tool’s functions are described. In order to demonstrate the feasibility and ease of script reuse with S-COL, we describe the flexible re-implementation of a collaboration script for argumentation in S-COL and its adaptation to different learning platforms. To demonstrate that a collaboration script implemented in S-COL can actually foster learning, an empirical study about the effects of a specific script for collaborative online search on learning activities is presented. The further potentials and the limitations of the S-COL approach are discussed

    Contested Collective Intelligence: rationale, technologies, and a human-machine annotation study

    Get PDF
    We propose the concept of Contested Collective Intelligence (CCI) as a distinctive subset of the broader Collective Intelligence design space. CCI is relevant to the many organizational contexts in which it is important to work with contested knowledge, for instance, due to different intellectual traditions, competing organizational objectives, information overload or ambiguous environmental signals. The CCI challenge is to design sociotechnical infrastructures to augment such organizational capability. Since documents are often the starting points for contested discourse, and discourse markers provide a powerful cue to the presence of claims, contrasting ideas and argumentation, discourse and rhetoric provide an annotation focus in our approach to CCI. Research in sensemaking, computer-supported discourse and rhetorical text analysis motivate a conceptual framework for the combined human and machine annotation of texts with this specific focus. This conception is explored through two tools: a social-semantic web application for human annotation and knowledge mapping (Cohere), plus the discourse analysis component in a textual analysis software tool (Xerox Incremental Parser: XIP). As a step towards an integrated platform, we report a case study in which a document corpus underwent independent human and machine analysis, providing quantitative and qualitative insight into their respective contributions. A promising finding is that significant contributions were signalled by authors via explicit rhetorical moves, which both human analysts and XIP could readily identify. Since working with contested knowledge is at the heart of CCI, the evidence that automatic detection of contrasting ideas in texts is possible through rhetorical discourse analysis is progress towards the effective use of automatic discourse analysis in the CCI framework

    Community peer-led falls prevention presentations: What do the experts suggest?

    Get PDF
    Falls among older adults are a major problem. Despite considerable progress in falls prevention research, older adults often show low motivation to engage in recommended preventive strategies. Peer-led falls prevention education for older adults may have potential for bridging the research evidence-practice gap, thereby promoting the uptake of falls prevention strategies. We evaluated peer educators’ presentations of falls prevention education to community-dwelling older adults in regard to established criteria that were consistent with adult learning principles, the framework of health behaviour change, falls prevention guidelines, and recommendations for providing falls prevention information. We conducted a within-stage mixed model study using purposive and snowball sampling techniques to recruit 10 experts to evaluate video recordings of the delivery of three peer-led falls prevention presentations. Each expert viewed three videos and rated them using a questionnaire containing both open-ended and closed items. There was a good level of expert agreement across the questionnaire domains. Though the experts rated some aspects of the presentations highly, they thought that the presentations were mainly didactic in delivery, not consistently personally relevant to the older adult audience, and did not encourage older adults to engage in the preventive strategies that were presented. Based on the experts’ findings, we developed five key themes and recommendations for the effective delivery of peer led falls prevention presentations. These included recommending that peer educators share falls prevention messages in a more interactive and experiential manner and that uptake of strategies should be facilitated by encouraging the older adults to develop a personalised action plan. Findings suggest that if peer-led falls prevention presentations capitalise on older adults’ capability, opportunity, and motivation, the older adults may be more receptive to take up falls prevention messages

    Using graph theory to analyze biological networks

    Get PDF
    Understanding complex systems often requires a bottom-up analysis towards a systems biology approach. The need to investigate a system, not only as individual components but as a whole, emerges. This can be done by examining the elementary constituents individually and then how these are connected. The myriad components of a system and their interactions are best characterized as networks and they are mainly represented as graphs where thousands of nodes are connected with thousands of vertices. In this article we demonstrate approaches, models and methods from the graph theory universe and we discuss ways in which they can be used to reveal hidden properties and features of a network. This network profiling combined with knowledge extraction will help us to better understand the biological significance of the system

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore